A Rooftop Liquid-Desiccant Air Conditioner

Mr. William C. Griffiths Principal Investigator Kathabar, Inc.

Dr. Andrew Lowenstein AIL Research, Inc.

IES Peer Review Nashville, TN May 1, 2002

Overview

- Develop a competitive thermally activated packaged rooftop air conditioner that uses low-flow liquid-desiccant technology
- Physical and functional characteristics close to those of conventional DX rooftop air conditioner
- Gas-fired cooling system that could be adapted to other thermal sources
- Identify promising early markets
- Laboratory demonstration that attracts HVAC manufacturer for Phase II

Project Team and Partnerships

- Kathabar, Inc.
 - Leading manufacturer of liquid desiccant systems
 - > First commercial sale of LiCl system in 1935
 - Unique FRP and sheet metal capability
 - Headquarters in Somerset, NJ
 - > 55,000 s.f. manufacturing plant in Elizabethtown, NC
- > Mr. William Griffiths, Chief Engineer, Principal Investigator
- > AIL Research, Inc.
 - Developer of low-flow liquid-desiccant technology
 - Advanced conditioners and regenerators now ready
- Dr. Andrew Lowenstein, lead AILR engineer

Generic Liquid-Desiccant AC

Why Pursue Liquid Desiccants?

- Heat and mass transfer in a single component
 - low pressure drops
 - low surface area
 - high "specific" cooling
 - Relatively small size
- Can use interchange HX
 - improves efficiency
 - reduces heat "dump back"
- High efficiency options for regeneration
 - VCD regenerator can have COP over 2.0
- Low temperature regeneration also possible
 - 0.6 COP at 160 F
- Potentially low first cost and operating costs

Tasks

- Identify early markets for rooftop LD air conditioner
- Optimize design of LD air conditioner
- Develop test methods and rating procedures
- Fabricate prototype
- Test prototype in laboratory

Accomplishments

- 15-ton target capacity
 - > \$160,000,000/year sales for 11 to 15-ton packaged ACs
 - 5 to 11-ton market is larger but it will be more difficult to compete with smaller low-cost DX systems
- Target markets that demand superior latent performance
- Preliminary designs completed for three configurations
 - Evaporatively cooled conditioner
 - Water-cooled conditioner with open cooling tower
 - Water-cooled conditioner with closed fluid cooler
- ➤ All configurations use high-efficiency 1½-effect regenerator
- Comparable seasonal performance for three designs

Evaporatively Cooled Conditioner

Evaporatively-Cooled Model

Water-Cooled Conditioner

Assembly of 6,000 cfm Conditioner

6,000 cfm Conditioner

Water-Cooled versus Evap-Cooled

Evap-cooled conditioner will have closer approach to wet-bulb temperature

Evap-cooled: 338 cfm per ton

Water-cooled & CT: 370 cfm per ton

Water-cooled & CFC: 383 cfm per ton

- Evap-cooled conditioner will have less material; potentially lower cost
- Water-cooled conditioner ready to operate in field; evapcooled more than 6-months behind (Phase II DOE SBIR)
- Water-cooled conditioner easier to package as rooftop unit; more compact design

15-ton Rooftop AC with Water-Cooled Conditioner

15-Ton Rooftop AC with Evap-Cooled Conditioner

Impact of Advanced LD Technology Humidity Control with High Latent Loads

- Conventional DX system with reheat
- Conventional DX system with Air-Air HX
- Evap-cooled liquid-desiccant conditioner
 - Constant desiccant concentration
 - Variable desiccant concentration

Impact of Advanced LD Technology Humidity Control with High Latent Loads Assumptions

- School in Houston, TX
- 10,000 cfm (30% nominal) ventilation air
- ventilation for 13 hours per day, weekdays only
- April through October; summer school session
- Humidity loads must be met
- For DX, 4-row evaporator, 275 fpm face velocity
- > 80% efficient gas-fired boiler for reheat

Impact of Advanced LD Technology

	air	excess	compress	main fan	7-month		
	flow	sensible	power	power	demand	gas	cost
	cfm	kBtu	kWh	kWh	kW	therm	dollars
DX with reheat	67,200	759,023	172,809	60,147	1,495	0	31,634
DX with 50% A-A HX	45,150	105,966	132,711	60,168	1,090	1,325	21,087
Evap-Cooled LD, 45% LiCI	41,103	0	0	58,253	329	19,403	17,770
Evap-Cooled, 32% to 45% LiCI	41,103	0	0	58,253	329	17,217	16,459

"A-A HX" -- air-to-air heat exchanger
"LD" -- liquid-desiccant conditioner

COE \$0.06 per kWh
COG \$0.60 per therm
demand \$8.00 per kW

Manufacturing Costs 6,000 cfm Rooftop AC 500 units per year

Water-cooled	d conditioner	\$3,750
--------------	---------------	---------

Scavenging air regenerator \$ 1	275
---------------------------------	-----

- High-Temp regenerator stage \$ 660
- Interchange heat exchanger \$ 340
- Cooling tower \$ 760
- > Fluid heater \$1,600
- Partial total

\$1.23 per cfm

Size of Rooftop Air Conditioner

- Conventional 25-ton rooftop
- Evap-cooled 15-ton rooftop
- Water-cooled 15-ton rooftop

67 cf/1000 cfm

134 cf/1000 cfm

70 cf/1000 cfm

Project Milestones

- Select target capacity
 - Completed November 2001
- Optimize conceptual designs
 - Completed March 2002
- Select conditioner & prepare product drawings
 - On schedule August 2002
- Fabrication of prototype
 - > On schedule February 2003
- Laboratory test of prototype
 - > On schedule summer 2003

Summary

- Low-flow liquid-desiccant conditioner to be tested at Kathabar plant this summer
- Low-flow scavenging-air regenerator to be tested at Kathabar plant this summer
- Evaporatively-cooled conditioner preferred if technology is ready
- 1½-effect regenerator preferred, but first prototype may use only scavenging-air regenerator
- Potentially the lowest cost option for controlling indoor humidity when latent loads are high
- Significant energy savings when coupled to on-site fuel cell or engine-driven generator
 - > COP of 1.25 with 320 F heat source
 - > COP of 0.60 with 160 F heat source